
MonoPass: A Password Manager without Master Password
Authentication

Hyeonhak Jeong
uosmorrie24@uos.ac.kr
University of Seoul

Seoul, Republic of Korea

Hyunggu Jung∗
hjung@uos.ac.kr
University of Seoul

Seoul, Republic of Korea

ABSTRACT
Passwords are the most common user authentication methods. Pass-
word policies regulate passwords to a certain degree of complexity,
which also makes it difficult for users to create and remember pass-
words. Password managers improve both security and usability by
allowing users to memorize only one master password. However,
authenticating to the password manager with the master password
has the risk of exposing all passwords when the security of the
password manager is breached. We present a password manager,
MonoPass, that leverages a master password to regenerate consis-
tent passwords across a variety of devices and passes password
metadata through a central server. MonoPass enables users to syn-
chronize passwords without storing user data on the server and
without using authentication with the master password.

CCS CONCEPTS
• Security and privacy → Usability in security and privacy;
Authentication.

KEYWORDS
Password management, Password generator, Password manager,
Hashing
ACM Reference Format:
Hyeonhak Jeong and Hyunggu Jung. 2021. MonoPass: A Password Manager
without Master Password Authentication. In 26th International Conference
on Intelligent User Interfaces (IUI ’21 Companion), April 14–17, 2021, College
Station, TX, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3397482.3450720

1 BACKGROUND
Passwords are known as common user authentication methods. To
protect passwords from adversaries, many websites (e.g., Google
and Facebook) demand users to follow password policies that en-
force users to create passwords with complexity to protect pass-
words (e.g., passwords should be longer than 9 characters, contain
at least one special character, at least one lowercase character, and
at least one single-digit number). However, Komanduri et al. re-
ported that the password policy of the websites made it difficult
∗Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IUI ’21 Companion, April 14–17, 2021, College Station, TX, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8018-8/21/04.
https://doi.org/10.1145/3397482.3450720

for users to create and memorize passwords [13]. In order to use
multiple websites and follow the password policy, some users use
the same password for multiple websites, or use a small change
of existing password [7]. These coping strategies could weaken
the security of password authentication [11]. For example, when
the password of one website is exposed, the password of another
website using the same password would be also exposed. Password
managers may provide a solution for users to easily create and
remember passwords. For example, the password managers allow
users to remember only one master password. They generate or
encrypt multiple passwords of high complexity using the master
password. Nevertheless, if the password manager stores all the
passwords, an attack against the password manager risks exposing
all passwords. For instance, if the master password authentication
of the password manager is breached through offline brute force
attacks, all passwords stored in the password vault will be exposed.
Therefore, users would need a system that manages their passwords
securely. In the following sections, we present MonoPass, a pass-
word manager that creates passwords and synchronizes passwords
across multiple user devices without storing any passwords.

2 RELATEDWORK
Prior work proposed a variety of password generation algorithms
and management systems [1–5, 8–10, 15–21]. One way to create
passwords while protecting them from attacks on storage was to
store only partial data of the password and hash this data with the
master password to generate final password [3, 9, 10, 16, 18]. For
example, Marky et al. [16] suggested a password generation scheme
that generates multiple passwords by hashing the master password.
Furthermore, previous studies showed that the functionality of the
password manager creates potential targets of the security attack.
For example, PALPAS [10] offered a password synchronization func-
tion but used authentication with the master password which is
exploitable by adversaries. To our knowledge, no password manage-
ment systems offered password regeneration, password update and
password synchronization without password storage, data storage
on a central server and authentication with a master password. In
a similar way as used by prior work [3, 9, 10, 16, 18], MonoPass
generates passwords by hashing them with a master password and
salt, because it stores less information about the password. How-
ever, MonoPass does not require the authentication with the master
password, even for the password synchronization.

3 SYSTEM OVERVIEW
MonoPass consists of three components: a password generator, a
password manager and a central server. The password generator
performs three activities: (1) receiving a master password from

52

https://doi.org/10.1145/3397482.3450720
https://doi.org/10.1145/3397482.3450720
https://doi.org/10.1145/3397482.3450720


IUI ’21 Companion, April 14–17, 2021, College Station, TX, USA Hyeonhak Jeong and Hyunggu Jung

Figure 1: A password generation flowchart consists of user
inputs as circle symbols, generation procedures as square
symbols, and one password verification step as a diamond
symbol.

the user, (2) collecting metadata to be used as a hash salt, and
(3) hashing them to generate a final password. The detailed pass-
word generation procedure is described in the Section 3.1. The
password manager controls the creation, modification, and dele-
tion of password metadata, such as the username and password
length. These functions are described in the Section 3.2. The cen-
tral server controls the synchronization of data between the two
password managers. The synchronization method is described in
the Section 3.3.

3.1 Password generator
The password generator creates passwords by converting the mas-
ter password entered by the user. Fig. 1 depicts the password gen-
eration process. The password generator receives the following
metadata from the user: name of the password (e.g., the name of
the website), username, version of the password (e.g., the password
generation date), and password policy (e.g., length of the password,
required special characters). The password generation procedure
consists of hashing using the key derivation function, PBKDF2 [12]
and an encoding process to follow the password policy. In the first
hash, the password generator converts the master password using
PBKDF2 and HMAC-SHA256 or HMAC-SHA512 [6, 14] for the hash
functions. In this process, the metatdata (name of the password,
user name and the versions of the password) is concatenated and
used for the salt of PBKDF2. The password generator encodes the
hash output to follow the password policy. The generator uses the
password policy information (such as password length, special char-
acter types, uppercase alphabet, lowercase alphabet and numeric

requirements) from the metadata to encode the hash. The generator
creates an encoding table with the password policy requirements
of letter case, number, and special character type. For example,
if the password should contain at least one lowercase alphabetic
character, at least one digit, and at least one special character “_
(underbar)”, the encoding table will be filled with 26 lowercase al-
phabetic characters (a to z), 10 single-digit numbers (0 to 9), and
one special character. Since the size of the encoding table is 256,
after filling in the first 37 characters, repeating from the lowercase
alphabet to fill the table. The generator converts the hash output
using the encoding table and shortens the password by the pass-
word length required by the password policy. Since the hashing
and encoding process do not guarantee that the password follows
the password policy, the generated password must be verified if it
meets the password requirements. If the encoded password does
not follow the policy, the generator pushes the encoding table 26
characters and re-encodes the hash except a few verified characters.
Otherwise, the generator displays the final password to the user.

3.2 Password manager
The password manager manages the metadata used for password
generation. The password manager has three main tasks: creation,
modification, and deletion of password metadata.

3.2.1 Creation of password metadata. Users are allowed to create
new metadata by pushing the “Create new password” button in
the password manager’s options menu (see Fig 2). The password
manager provides the user with a metadata entry form. Assuming
that only one master password is used, one metadata corresponds
to one password. Therefore, a user who uses multiple passwords
would create metadata corresponding to each password.

3.2.2 Modification of password metadata. Users are allowed to up-
date the final password by modifying the metadata of the password
instead of the master password. When the user selects one of the
metadata shown on the screen and pushes “Modify this password”
button (see Fig 2), the password manager presents the user with a
form in which the modified metadata should be entered as when
creating metadata. If a simple password update is required, the user
only needs to update the password version without changing the
rest in the metadata. If the password policy is changed so it is nec-
essary to change the password length or character types, the user
should update the corresponding contents in the metadata. When
the user completes the input, the password manager overwrites the
modified metadata over the previous metadata.

3.2.3 Deletion of password metadata. Users are allowed to delete
metadata from the password manager. If the user select one of the
metadata and push the “Delete this password” button (see Fig 2),
the meta data will be deleted.

3.3 Central server
In order to use the same password on other devices that do not
have the same metadata, the function of transmitting the metadata
to another device is essential. MonoPass synchronizes the meta-
data through the central server. First, the user enters an arbitrary
identification code in the device to send the password metadata. If
the code is the same as one of the codes existing on the server, the

53



MonoPass: A Password Manager without Master Password Authentication IUI ’21 Companion, April 14–17, 2021, College Station, TX, USA

Figure 2: Implemented screens. Left and center are
MonoPass Android app implementation screens. The
right side shows a comparison of the password generation
results on two different devices (i.e., Android smartphone
and Windows PC).

server asks the user to enter a new code. If the code is a new one,
then, the user enters the same code from the other device to receive
the metadata. The central server identifies the two devices to which
the metadata is to be delivered by the identification code. The user
should confirm the connection on both devices to prevent incorrect
connection. Metadata would be passed from one device to the other
via the central server. Users are allowed to obtain consistent final
passwords by using the same metadata and the master password
(see Fig 2). To avoid the risk of password exposure from the security
attacks against the central server, the server should keep the data
only in the main memory temporarily and remove the metadata
when all the metadata is transmitted.

4 CONCLUSION AND FUTUREWORK
We present MonoPass for generating, managing, and synchroniz-
ing passwords. MonoPass provides users with password generation
through the existing password generation scheme that hashes the
master password with a salt. The key contributions of this study are
twofold: implementing a passwordmanagement system to show the
device independence in two different environments, and showing a
method of synchronizing passwords while maintaining the secu-
rity advantages of the password generation algorithm. MonoPass
provides security benefits against adversary threats. In addition to
that exposing one password may not leak other passwords or the
master password, the master password exists in the device memory
only during the password creation and input process. Also, even
if adversaries steal all of MonoPass’ data, they still would need to
perform brute force attacks against real services to get the master
password. However, there still remain limitations in our study. First
of all, password synchronization is only possible through a central
server. It would not be possible to transmit the metadata to another
device without an Internet connection. Second, we did not evaluate
the usability and feasibility of MonoPass with users in real-life
scenarios. It may be inconvenient for users to enter metadata, to
enter a master password, and/or to copy and paste passwords from
MonoPass. Last, while we did not conduct a security analysis of
MonoPass, we may need to examine whether a password generated
by MonoPass can protect its master password in a specific threat
scenario. Future work still remain to integrate additional password
synchronization methods, such as using a USB connection, into

MonoPass to increase device independence. Also, we plan on evalu-
ating the usability and feasibility of MonoPass with potential target
users. MonoPass has potential to manage passwords for users who
use passwords across multiple devices and are willing to secure
the master password without storing passwords in any form. We
hope that MonoPass enables users to interact with an intelligent
user interface for authentication to access information technology
and provides inspiration for researchers investigating systems that
store, transmit, and use sensitive information.

ACKNOWLEDGMENTS
This work was supported by the National Research Foundation
of Korea(NRF) grant funded by the Korea government(MSIT) (No.
2020R1G1A1009133).

REFERENCES
[1] 1Password. 2021. 1Password. Retrieved January 6, 2021 from https://1password.

com
[2] S Agholor, AS Sodiya, AT Akinwale, and OJ Adeniran. 2016. A Secured Mobile-

Based Password Manager. In 2016 Sixth International Conference on Digital Infor-
mation Processing and Communications (ICDIPC). IEEE, 103–108.

[3] Maarten Billemont. 2011. Master Password. Retrieved January 4, 2021 from
https://masterpassword.app/

[4] Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan Boneh. 2010. Kamouflage:
Loss-resistant password management. In European symposium on research in
computer security. Springer, 286–302.

[5] Bart Busschots. [n.d.]. XKPasswd. Retrieved January 4, 2021 from https://
xkpasswd.net/s/

[6] Quynh H Dang. 2015. Secure hash standard. Technical Report.
[7] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng

Wang. 2014. The tangled web of password reuse.. In NDSS, Vol. 14. 23–26.
[8] Masayuki Fukumitsu, Shingo Hasegawa, Jun-ya Iwazaki, Masao Sakai, and Daiki

Takahashi. 2016. A proposal of a password manager satisfying security and
usability by using the secret sharing and a personal server. In 2016 IEEE 30th
International Conference on Advanced Information Networking and Applications
(AINA). IEEE, 661–668.

[9] J Alex Halderman, Brent Waters, and Edward W Felten. 2005. A convenient
method for securely managing passwords. In Proceedings of the 14th international
conference on World Wide Web. 471–479.

[10] Moritz Horsch, Andreas Hülsing, and Johannes Buchmann. 2015. PALPAS–
PAssword Less PAssword Synchronization. In 2015 10th International Conference
on Availability, Reliability and Security. IEEE, 30–39.

[11] Blake Ives, Kenneth R Walsh, and Helmut Schneider. 2004. The domino effect of
password reuse. Commun. ACM 47, 4 (2004), 75–78.

[12] Burt Kaliski. 2000. PKCS# 5: Password-based cryptography specification version 2.0.
Technical Report. RFC 2898, september.

[13] Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L Mazurek,
Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Serge Egelman. 2011. Of
passwords and people: measuring the effect of password-composition policies.
In Proceedings of the sigchi conference on human factors in computing systems.
2595–2604.

[14] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. 1997. HMAC: Keyed-hashing
for message authentication.

[15] LogMeIn. 2021. LastPass. Retrieved January 6, 2021 from https://www.lastpass.
com

[16] Karola Marky, Peter Mayer, Nina Gerber, and Verena Zimmermann. 2018. As-
sistance in Daily Password Generation Tasks. In Proceedings of the 2018 ACM
International Joint Conference and 2018 International Symposium on Pervasive and
Ubiquitous Computing and Wearable Computers. 786–793.

[17] Stephen Ostermiller. 2013. Random Password Generator. Retrieved January 4,
2021 from https://passwordcreator.org/

[18] Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C Mitchell. 2005.
Stronger Password Authentication Using Browser Extensions.. InUSENIX Security
Symposium. Baltimore, MD, USA, 17–32.

[19] Kevin Albert Schmittle. 2018. Regenerative Password Manager. Ph.D. Dissertation.
New Mexico Institute of Mining and Technology.

[20] Elizabeth Stobert and Robert Biddle. 2014. A password manager that doesn’t
remember passwords. In Proceedings of the 2014 New Security ParadigmsWorkshop.
39–52.

[21] Rui Zhao and Chuan Yue. 2014. Toward a secure and usable cloud-based password
manager for web browsers. Computers & Security 46 (2014), 32–47.

54

https://1password.com
https://1password.com
https://masterpassword.app/
https://xkpasswd.net/s/
https://xkpasswd.net/s/
https://www.lastpass.com
https://www.lastpass.com
https://passwordcreator.org/

	Abstract
	1 Background
	2 Related work
	3 System overview
	3.1 Password generator
	3.2 Password manager
	3.3 Central server

	4 Conclusion and Future Work
	Acknowledgments
	References

